Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.736
1.
Sci Rep ; 14(1): 10746, 2024 05 10.
Article En | MEDLINE | ID: mdl-38730004

Oxidative stress strongly influences the pathophysiology of erectile dysfunction (ED). In this study, we used the oxidative balance score (OBS), a composite index, to measure the effects of oxidative stress triggered by diet and lifestyle factors. Here, we conducted a cross-sectional study to determine the statistical relationship between OBS and ED among adult males in the U.S. The data from 3318 participants in the National Health and Nutrition Examination Survey (NHANES) 2001-2004 were analyzed. Weighted logistic regression was used to correct for confounding factors and acquire nationwide representative estimates. Generalized additive modeling was used to explore the nonlinear relationship. We also supplemented subgroup and sensitivity analysis to examine the robustness of the main results. Multivariate logistic regression indicated a consistent negative linear association between OBS and ED across all participants [OR (95% CI) = 0.96 (0.94, 0.98)]. After categorizing OBS into tertiles, participants in the highest tertile had 43% lower odds of having ED than those in the lowest tertile [OR (95% CI) = 0.57 (0.37, 0.87)]. The generalized additive model also visualized the linear trend of this association. Furthermore, this linear relationship remained relatively consistent, regardless of whether subgroup or sensitivity analyses were performed. Our findings suggest that adopting a lifestyle and diet pattern that promotes favorable OBS may effectively protect against the development of ED, regardless of the underlying causes.


Erectile Dysfunction , Nutrition Surveys , Oxidative Stress , Humans , Male , Erectile Dysfunction/epidemiology , Erectile Dysfunction/metabolism , Middle Aged , Adult , United States/epidemiology , Cross-Sectional Studies , Life Style , Aged , Risk Factors , Diet
2.
Local Reg Anesth ; 17: 67-77, 2024.
Article En | MEDLINE | ID: mdl-38742096

Purpose: Rebound pain after regional anesthesia, a common phenomenon when the analgesic effect wears off, has been recognized in the last a few years. The aim of this study is to analyze the status and tendency of this area in a macroscopic perspective. Methods: Bibliometric analysis is the primary methodology of this study. Literature retrieval was conducted in Web of Science (WoS) Core Collection. WoS, Excel, VOSviewer and CiteSpace were employed to do the analyses and visualization. Parameters were analyzed, such as publications, citations, journals, and keywords, etc. Results: In total, 70 articles in the past 10 years were identified eligible. Most articles (14 pieces) were published in 2021, followed by 2022 and 2023 with 13 articles. Researchers come from 134 institutions and 20 countries. Huang Jung-Taek, Hallym College, and USA are the most productive author, institution and country, respectively. The articles were mainly published on the top journals of anesthesiology, orthopedics and surgery. The topic of these articles is primarily about the clinical issues of rebound pain. Peripheral nerve block, brachial plexus block and femoral nerve block are the activist keywords in the area, while perioperative management, fracture surgery and outcome may become hotpots in the next years. Conclusion: Our results show that the study of rebound pain after regional anesthesia starts relatively late and is in upward tendency, future studies can focus on the perioperative management and outcomes of fracture patients, and the definition and mechanism of rebound pain after regional anesthesia.

3.
J Exp Biol ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38726554

Secure landing is indispensable for both leaping animals and robotics. Tree frogs, renowned for their adhesive capabilities, can effectively jump across intricate 3D terrain and land safely. Compared to jumping, the mechanisms underlying their landing technique, particularly in arboreal environments, have remained largely unknown. In this study, we focused on the landing patterns of the tree frogs Polypedates Dennysi on horizontally placed perches, explicitly emphasizing the impact of perch diameters. Tree frogs demonstrated diverse landing postures, including the utilization of (1) single front foot, (2) double front feet, (3) anterior bellies, (4) middle bellies, (5) posterior bellies, (6) single hind foot, or (5) double hind feet. Generally, tree frogs favour bellies on slimmer targets but double front feet on large perches. Analysis of limb-trunk relationships revealed their adaptability to modifying postures, including body positions and limb orientations, for successful landing. The variations in the initial landing postures affect the succeeding landing procedures and, consequently, the dynamics. As the initial contact position was switched from front foot to hind foot, the stabilization time decreased first, reaching the minimum in middle belly landings, and then increased. The maximum vertical forces changed in an inverse trend, whereas the maximum fore-aft forces continuously increased as the initial contact position switched. As the perch diameter rose, the time expenses dropped, whereas the maximum impact increased. These findings not only added to our understanding of frog landings but also highlighted the necessity of considering perch diameters and landing styles when studying the biomechanics of arboreal locomotion.

4.
Biologics ; 18: 115-127, 2024.
Article En | MEDLINE | ID: mdl-38746773

Background and Objectives: Gene expression, morphology, and electrophysiological combination are essential for assessing the dynamic development of human induced pluripotent stem cell-derived atrial- and ventricular-like cardiomyocytes (iPS-AM and iPS-VM, respectively). Methods: For iPS-AM/VM differentiation, we performed the small molecule-based temporal modulation of the retinoic acid and bone morphogenetic protein signaling pathways. We investigated the gene expression and morphology using immunofluorescence, quantitative real-time polymerase chain reaction, flow cytometry, and transmission electron microscopy as well as registered electrophysiological functions using a whole-cell patch clamp on days 20, 30, and 60 post-differentiations. Results: Pan-cardiomyocyte marker, including troponin T2 (TNNT2) and alpha-actinin-2 (ACTN2), expressions increased both in iPS-AMs and iPS-VMs. Similarly, the mRNA expression of both iPS-AM-specific markers, ie, natriuretic peptide A (NPPA), myosin light chain 7 (MYL7), and K+ channel Kir3.4 (KCNJ5), and iPS-VM-specific markers, ie, gap junction α-1 (GJA1), myosin light chain 2 (MYL2), and alpha-1-subunit of a voltage-dependent L-type calcium channel (CACNA1C), increased from 0 to 20 days, and then decreased from 30 to 60 days. Concerning morphology, cardiac troponin-T (cTnT) arrangement was progressively organized and developed from a disorderly myofibrillar distribution to an organized sarcomere pattern both in iPS-AMs and iPS-VMs. Mitochondrial numbers gradually increased and those of lipid droplets decreased during dynamic development. Regarding physiological function, the resting and action potential amplitudes remained statistically indifferent in both cell types, and the action potential duration was prolonged during the development. Conclusion: IPS-AMs/VMs displayed dynamic development concerning their gene expression, morphology, and electrophysiological function. The discoveries of this study could provide novel insights into heart development and encourage further research.

5.
Cell Death Discov ; 10(1): 228, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740771

Chemotherapy is an important therapuetic strategy for colorectal cancer (CRC), but chemoresistance severely affects its efficacy, and the underlying mechanism has not been fully elucidated. Increasing evidence suggests that lipid peroxidation imbalance-mediated ferroptosis is closely associated with chemoresistance. Hence, targeting ferroptosis pathways or modulating the tolerance to oxidative stress might be an effective strategy to reverse tumor chemoresistance. HtrA serine protease 1 (HTRA1) was screened out as a CRC progression- and chemoresistance-related gene. It is highly expressed in CRC cells and negatively correlated with the prognosis of CRC patients. Gain- and loss-of-function analyses demonstrated a stimulatory role of HTRA1 on the proliferation of CRC cells. The enrichment analysis of HTRA1-interacting proteins indicated the involvement of ferroptosis in the HTRA1-mediated chemoresistance. Moreover, electron microscope analysis, as well as the ROS and MDA levels in CRC cells also confirmed the effect of HTRA1 on ferroptosis. We also verified that HTRA1 could interact with SLC7A11 through its Kazal structural domain and up-regulate the expression of SLC7A11, which in turn inhibited the ferroptosis and leaded to the chemoresistance of CRC cells to 5-FU/L-OHP. Hence, we propose that HTRA1 may be a potential therapeutic target and a prognostic indicator in CRC.

6.
Accid Anal Prev ; 203: 107616, 2024 May 08.
Article En | MEDLINE | ID: mdl-38723335

Autonomous vehicles (AVs) provide an opportunity to enhance traffic safety. However, AVs market penetration is still restricted due to their safety concerns and dependability. For widespread adoption, it is crucial to thoroughly assess the safety response of AVs in various high-risk scenarios. To achieve this objective, a clustering method was used to construct typical testing scenarios based on the China In-depth Mobility Safety Study-Traffic Accident (CIMSS-TA) database. Initially, 222 car-to-powered two-wheelers (PTWs) crashes and 180 car-to-car crashes were reconstructed from CIMSS-TA database. Second, six variables were extracted and analyzed, including the motion of the two vehicles involved, relative movement, lighting condition, road condition, and visual obstruction. Third, these variables were clustered using the k-medoids algorithm, identifying five typical pre-crash scenarios for car-to-PTWs and seven for car-to-car. Additionally, we extracted the velocities and surrounding environmental information of the crash-involved parties to enrich the scenario description. The approach used in this study used in-depth case review and thus provided more insightful information for identifying and quantifying representative high-risk scenarios than prior studies that analyzed overall descriptive variables from Chinese crash databases. Furthermore, it is crucial to separately test car-to-car scenarios and car-to-PTWs scenarios due to their distinct motion characteristics, which significantly affect the resulting typical scenarios.

7.
Int J Biol Macromol ; 269(Pt 1): 132075, 2024 May 03.
Article En | MEDLINE | ID: mdl-38705317

Carbonic anhydrase (CA) has a promising application as a green and efficient biocatalyst for CO2 capture, and many successful cases of immobilizing CA have been reported. However, CA antifouling coatings on metal for CO2 sequestration have rarely been reported. Herein, dimeric CA from Sulfurihydrogenibium azorense (SazCA) with a ferritin tag, which was prepared by low-speed centrifugation with high yield, was adopted as a free enzyme and encapsulated in the sol-gel silica. The silica-immobilized CAs were dispersed into the commercialized metal-antifouling epoxy resin paint to obtain CA coated nickel foams, which had excellent stability, with 90 % and 67 % residual activity after 28 days of incubation at 30 °C and 60 °C, respectively. The CA coated nickel foams remained 60 % original activity after 6 cycles of use within 28 days. Then, a CA-microalgae carbon capture device was constructed using the CA coated nickel foams and Chlorella. The growth rate of Chlorella was significantly increased and the biomass of Chlorella increased by 29 % compared with control after 7 days of incubation. Due to the simple and cost-effective preparation process, sustainable and efficient CO2 absorption, this easy-to-scale up CA coated nickel foam has great potential in CA assisted microalgae-based CO2 capture and carbon neutrality.

8.
Mol Ther ; 2024 May 06.
Article En | MEDLINE | ID: mdl-38715363

Human Papillomavirus (HPV) 16 and 18 infections are related to many human cancers. Despite several preventative vaccines for high-risk (hr) HPVs, there is still an urgent need to develop therapeutic HPV vaccines for targeting pre-existing hrHPV infections and lesions. In this study, we developed a lipid nanoparticle (LNP)-formulated mRNA-based HPV therapeutic vaccine (mHTV)-03E2, simultaneously targeting the E2/E6/E7 of both HPV16 and HPV18. mHTV-03E2 dramatically induced antigen-specific cellular immune responses, leading to significant CD8+ T cell infiltration and cytotoxicity in TC-1 tumors derived from primary lung epithelial cells of C57BL/6 mice expressing HPV E6/E7 antigens, mediated significant tumor regression, and prolonged animal survival, in a dose-dependent manner. We further demonstrated significant T cell immunity against HPV16/18 E6/E7 antigens for up to 4 months post-vaccination in immunological and distant tumor rechallenging experiments, suggesting robust memory T cell immunity against relapse. Finally, mHTV-03E2 synergized with immune checkpoint blockade to inhibit tumor growth and extend animal survival, indicating the potential in combination therapy. We conclude that mHTV-03E2 is an excellent candidate therapeutic mRNA vaccine for treating malignancies caused by HPV16 or HPV18 infections.

9.
Phys Rev Lett ; 132(16): 166002, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38701470

Superconductivity has been one of the focal points in medium and high-entropy alloys (MEAs-HEAs) since the discovery of the body-centered cubic (bcc) HEA superconductor in 2014. Until now, the superconducting transition temperature (T_{c}) of most MEA and HEA superconductors has not exceeded 10 K. Here, we report a TaNbHfZr bulk MEA superconductor crystallized in the BCC structure with a T_{c} of 15.3 K which set a new record. During compression, T_{c} follows a dome-shaped curve. It reaches a broad maximum of roughly 15 K at around 70 GPa before decreasing to 9.3 K at 157.2 GPa. First-principles calculations attribute the dome-shaped curve to two competing effects, that is, the enhancement of the logarithmically averaged characteristic phonon frequency ω_{log} and the simultaneous suppression of the electron-phonon coupling constant λ. Thus, TaNbHfZr MEA may have a promising future for studying the underlying quantum physics, as well as developing new applications under extreme conditions.

10.
Heliyon ; 10(9): e30363, 2024 May 15.
Article En | MEDLINE | ID: mdl-38694116

Due to the importance of accurate diagnosis and prompt treatment of this condition, the medical world is searching for a solution for its early detection and efficient treatment. Heart disease is one of the leading causes of death in modern society. With the development of computer science today, this issue can be resolved using computers. Data mining is one of the solutions for diagnosing this illness. One of the cutting-edge disciplines, data mining, can aid in better decision-making in many areas of medicine, including disease diagnosis and treatment. In order to improve diagnosis accuracy, a combination method using the evolutionary algorithms locust and support vector machine has been tested in this study. Use should be made of heart disease. Because of the hybrid nature of this approach, normalization is actually carried out in three steps: first, by using pre-processing operations to remove unknown and outlier data from the data set; second, by using the locust evolutionary algorithm to choose the best features from the available features; and third, by classifying the data set using a support vector machine. The accuracy criterion for the proposed method compared to Niobizin methods, neural networks, and J48 trees improved by 18 %, 30 %, and 24 %, respectively, after implementing it on the data set and comparing it with other algorithms used in the field of heart disease diagnosis.

11.
J Affect Disord ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38735583

BACKGROUND: Healthier lifestyle decreased the risk of mental disorders (MDs) such as depression and anxiety. However, research on the effects of a comprehensive healthy lifestyle on their progression is lacking. METHODS: 385,704 individuals without baseline MDs from the UK Biobank cohort were included. A composite healthy lifestyle score was computed by assessing alcohol intake, smoking status, television viewing time, physical activity, sleep duration, fruit and vegetable intake, oily fish intake, red meat intake, and processed meat intake. Follow-up utilized hospital and death register records. Multistate model was used to examine the role of healthy lifestyle on the progression of specific MDs, while a piecewise Cox regression model was utilized to assess the influence of healthy lifestyle across various phases of disease progression. RESULTS: Higher lifestyle score reduced risks of transitions from baseline to anxiety and depression, as well as from anxiety and depression to comorbidity, with corresponding hazard ratios (HR) and 95 % confidence intervals (CI) of 0.94 (0.93, 0.95), 0.90 (0.89, 0.91), 0.94 (0.91, 0.98), and 0.95 (0.92, 0.98), respectively. Healthier lifestyle decreased the risk of transitioning from anxiety to comorbidity within 2 years post-diagnosis, with HR 0.93 (0.88, 0.98). Higher lifestyle scores at 2-4 years and 4-6 years post-depression onset were associated with reduced risk of comorbidity, with HR 0.93 (0.87, 0.99) and 0.92 (0.86, 0.99), respectively. LIMITATION: The generalizability to other ethnic groups is limited. CONCLUSION: This study observed a protective role of holistic healthy lifestyle in the trajectory of MDs and contributed to identifying critical progression windows.

12.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119741, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38697304

Prostate cancer (PCa) is the second leading cause of death in males. It has been reported that δ-catenin expression is upregulated during the late stage of prostate cancer. Palmitoylation promotes protein transport to the cytomembrane and regulates protein localization and function. However, the effect of δ-catenin palmitoylation on the regulation of cancer remains unknown. In this study, we utilized prostate cancer cells overexpressing mutant δ-catenin (J6A cells) to induce a depalmitoylation phenotype and investigate its effect on prostate cancer. Our results indicated that depalmitoylation of δ-catenin not only reduced its membrane expression but also promoted its degradation in the cytoplasm, resulting in a decrease in the effect of EGFR and E-cadherin signaling. Consequently, depalmitoylation of δ-catenin reduced the proliferation and metastasis of prostate cancer cells. Our findings provide novel insights into potential therapeutic strategies for controlling the progression of prostate cancer through palmitoylation-based targeting of δ-catenin.

13.
Accid Anal Prev ; 202: 107572, 2024 Jul.
Article En | MEDLINE | ID: mdl-38657314

Autonomous Vehicles (AVs) have the potential to revolutionize transportation systems by enhancing traffic safety. Safety testing is undoubtedly a critical step for enabling large-scale deployment of AVs. High-risk scenarios are particularly important as they pose significant challenges and provide valuable insights into the driving capabilities of AVs. This study presents a novel approach to assess the safety of AVs using in-depth crash data, with a particular focus on real-world crash scenarios. First, based on the high-definition video recording of the whole process prior to the crash occurrences, 453 real-world crashes involving 596 passenger cars from China In-depth Mobility Safety Study-Traffic Accident (CIMSS-TA) database were reconstructed. Pertinent static and dynamic elements needed for the construction of the testing scenarios were extracted. Subsequently, 596 testing scenarios were created via each passenger car's perspective within the simulation platform. Following this, each of the crash-involved passenger cars was replaced with Baidu Apollo, a famous automated driving system (ADS), for counterfactual simulation. Lastly, the safety performance of the AV was assessed using the simulation results. A logit model was utilized to identify the fifteen crucial scenario elements that have significant impacts on the test results. The findings demonstrated that the AV could avoid 363 real-world crashes, accounting for approximately 60.91% of the total, and effectively mitigated injuries in the remaining 233 unavoidable scenarios compared to a human driver. Moreover, the AV maintain a smoother speed in most of the scenarios. The common feature of these unavoidable scenarios is that the AV is in a passive state, and the crashes are not caused by the AV violating traffic rules, but rather caused by abnormal behavior exhibited by the human drivers. Additionally, seven specific scenarios have been identified wherein AVs are unable to avoid a crash. These findings demonstrate that, compared to human drivers, AVs can avoid crashes that are difficult for humans to avoid, thereby enhancing traffic safety.


Accidents, Traffic , Automobile Driving , Automobiles , Safety , Accidents, Traffic/prevention & control , Accidents, Traffic/statistics & numerical data , Humans , Automobile Driving/statistics & numerical data , China , Automation , Computer Simulation , Video Recording , Logistic Models , Databases, Factual
14.
Clin Cancer Res ; 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652815

PURPOSE: This phase 1 trial aimed to determine the maximum tolerated fraction dose (MTFD) of hypofractionated radiotherapy (hypo-RT) combined with concurrent chemotherapy and subsequent consolidation immune checkpoint inhibitors (cICI) for patients with locally advanced non-small cell lung cancer (LA-NSCLC). PATIENTS AND METHODS: Split-course hypo-RT and hypo-boost combined with concurrent chemotherapy were administered at three dose levels (DLs), using a stepwise dose-escalation protocol. The sophisticated esophagus-sparing technique was implemented to restrict the dose to the esophagus. Patients who did not experience disease progression or unresolved G2+ toxicities after radiotherapy received cICI. Each DL aimed to treat 6 patients. The MTFD was defined as the highest DL at which <=2 patients of the 6 who were treated experienced treatment-related G3+ toxicity and <=1 patient experienced G4+ toxicity within 12 months post-radiotherapy. RESULTS: Eighteen patients were enrolled with 6 patients in each DL. All patients completed hypo-RT and concurrent chemotherapy, and 16 (88.9%) received at least one infusion of cICI, with a median of 10 infusions. Within the 12-month assessment period, one patient in DL1 experienced G3 pneumonitis, and one patient in DL3 developed G3 tracheobronchitis. The MTFD was not reached. The objective response rate (ORR) was 100%. With a median follow-up of 20.9 months, the 1-year overall survival and progression-free survival rate were 94.4% and 83.3%, respectively. CONCLUSIONS: Utilizing the split-course hypo-RT and hypo-boost approach, a fraction dose of 5Gy to a total dose of 60Gy, combined with concurrent chemotherapy and subsequent cICI, was well-tolerated, and yielded promising ORR and survival outcomes.

15.
Sci Total Environ ; 927: 172219, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38580120

Nature-based solutions (NBS) have great potential for achieving urban sustainability. While several reviews have comprehensively examined NBS, few have focused on its role in addressing urban sustainability challenges. Here we present a systematic review of 142 case studies selected from English papers published in SCI journals (i.e., indexed by Web of Science) during 2016-2022, whose titles, abstracts or keywords contain both urban-related terms and NBS-related terms. Using multiple methods, including statistical analysis, deductive content analysis, and inductive content analysis, we found that: (1) NBS have primarily been utilized to address urban flooding (43 %) and heat stress (21 %), with green roofs (24 %) and urban forests (16 %) being the most extensively studied NBS for tackling these challenges. (2) The ecosystem services (ES) capacity of NBS has been heavily researched (57 %), while studies addressing ES flows (7 %) and ES demand (18 %) are limited. (3) Most studies involved at least one NBS implementation process (83 %), but primarily focused on selecting and assessing NBS and related actions (66 %), with fewer studies on designing and implementing NBS and transferring & upscale NBS. We suggest that future research should contribute to the establishment of a checklist to assist in identifying which NBS types are effective in addressing specific urban sustainability challenges in varying contexts. Integrating the science and practice of NBS for urban sustainability is also crucial for advancing this field.

16.
JACS Au ; 4(4): 1521-1537, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38665668

The anticancer therapeutic effects of usnic acid (UA), a lichen secondary metabolite, have been demonstrated in vitro and in vivo. However, the mechanism underlying the anticancer effect of UA remains to be clarified. In this study, the target protein of UA was identified using a UA-linker-Affi-Gel molecule, which showed that UA binds to the 14-3-3 protein. UA binds to 14-3-3, causing the degradation of proteasomal and autophagosomal proteins. The interaction of UA with 14-3-3 isoforms modulated cell invasion, cell cycle progression, aerobic glycolysis, mitochondrial biogenesis, and the Akt/mTOR, JNK, STAT3, NF-κB, and AP-1 signaling pathways in colorectal cancer. A peptide inhibitor of 14-3-3 blocked or regressed the activity of UA and inhibited its effects. The results suggest that UA binds to 14-3-3 isoforms and suppresses cancer progression by affecting 14-3-3 targets and phosphorylated proteins.

17.
Biology (Basel) ; 13(4)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38666815

Electroencephalogram (EEG) analysis plays an indispensable role across contemporary medical applications, which encompasses diagnosis, monitoring, drug discovery, and therapeutic assessment. This work puts forth an end-to-end deep learning framework that is uniquely tailored for versatile EEG analysis tasks by directly operating on raw waveform inputs. It aims to address the challenges of manual feature engineering and the neglect of spatial interrelationships in existing methodologies. Specifically, a spatial channel attention module is introduced to emphasize the critical inter-channel dependencies in EEG signals through channel statistics aggregation and multi-layer perceptron operations. Furthermore, a sparse transformer encoder is used to leverage selective sparse attention in order to efficiently process long EEG sequences while reducing computational complexity. Distilling convolutional layers further concatenates the temporal features and retains only the salient patterns. As it was rigorously evaluated on key EEG datasets, our model consistently accomplished a superior performance over the current approaches in detection and classification assignments. By accounting for both spatial and temporal relationships in an end-to-end paradigm, this work facilitates a versatile, automated EEG understanding across diseases, subjects, and objectives through a singular yet customizable architecture. Extensive empirical validation and further architectural refinement may promote broader clinical adoption prospects.

18.
Phytomedicine ; 129: 155571, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38677270

BACKGROUND: Repairing the intestinal mucosal barrier and reducing persistent inflammation is the key strategies for the treatment of ulcerative colitis (UC). Zhilining Formula (ZLN), composed of Andrographis herba (AH), Sophorae flavescentis radix (SFA), and Aucklandia radix (AR), is a well-tried formula for the clinical treatment of enteritis and dysentery in China, and its mechanism has not been clarified. PURPOSE: This study aims to investigate the effect of ZLN on UC and elucidate its underlying mechanism via metabolomics analysis and experimental verification. METHODS: The effect of ZLN on UC was evaluated in a 3.5 % dextran sulfate sodium (DSS)-induced mice model via the body weight, disease activity index (DAI), colon length, colonic histopathology, expression of inflammation factors, and intestinal barrier in mice. An UPLC-Q-TOF-MS/MS approach-based metabolomics analysis was performed to preliminary explore the mechanism of ZLN in colitis. Based on the results of metabolomics analysis, the expression of related protein or mRNA in AHR/NF-κBp65 axis was determined by qPCR and western blotting. Moreover, the potential interactions of active ingredients of ZLN with NF-κBp65 and AHR were investigated in vitro through using agonists and inhibitors of NF-κBp65 and AHR, respectively. RESULTS: ZLN alleviated body weight loss and colonic shortening in colitis mice, and down-regulated the DAI and histopathological score as well. ZLN also decreased the levels of inflammatory factors (MPO, IL-1ß, TNF-α and IL-18), protected goblet cell function and intestinal barrier in DSS-induced mice. Metabolomics results revealed that 36 metabolites that were significantly altered in mice after induction with DSS, which involved in 16 metabolic pathways, including biosynthesis of unsaturated fatty acid, phenylalanine metabolism, arachidonic acid (AA) metabolism, tryptophan (Trp) metabolism, retinol metabolism, and sphingolipid metabolism, etc. ZLN restored 26 different metabolites (DEMs) of them to normal-like levels, indicating ZLN regulated the AA metabolism and Trp-metabolism in UC mice, which hinted its potential pharmacological mechanism related to AHR/NF-κBp65 axis. We further confirmed that ZLN could restrain the activation of NF-κBp65 signaling pathway and then inhibit the expression of its mediated inflammatory cytokines, such as IL-1ß, TNF-α, COX-2 and IL17A. Moreover, ZLN increased nuclear translocation of AHR and IL22 expression, which is an important regulatory signal for intestinal mucosal barrier repaired. Finally, we elucidated in vitro that the active ingredients of ZLN exerted anti-colitis effects by activating AHR and simultaneously inhibiting NF-κBp65. CONCLUSION: ZLN relieved colitis by AHR/NF-κBp65 axis. This study highlighted the important role of AHR and NF-κBp65 in UC, and provided a theoretical basis for the application of ZLN.

19.
Sci Rep ; 14(1): 8670, 2024 04 15.
Article En | MEDLINE | ID: mdl-38622371

Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease primarily characterized by progressive pulmonary vascular remodeling in a hypoxic environment, posing a significant clinical challenge. Leveraging data from the Gene Expression Omnibus (GEO) and human autophagy-specific databases, osteopontin (OPN) emerged as a differentially expressed gene, upregulated in cardiovascular diseases such as pulmonary arterial hypertension (PAH). Despite this association, the precise mechanism by which OPN regulates autophagy in HPH remains unclear, prompting the focus of this study. Through biosignature analysis, we observed significant alterations in the PI3K-AKT signaling pathway in PAH-associated autophagy. Subsequently, we utilized an animal model of OPNfl/fl-TAGLN-Cre mice and PASMCs with OPN shRNA to validate these findings. Our results revealed right ventricular hypertrophy and elevated mean pulmonary arterial pressure (mPAP) in hypoxic pulmonary hypertension model mice. Notably, these effects were attenuated in conditionally deleted OPN-knockout mice or OPN-silenced hypoxic PASMCs. Furthermore, hypoxic PASMCs with OPN shRNA exhibited increased autophagy compared to those in hypoxia alone. Consistent findings from in vivo and in vitro experiments indicated that OPN inhibition during hypoxia reduced PI3K expression while increasing LC3B and Beclin1 expression. Similarly, PASMCs exposed to hypoxia and PI3K inhibitors had higher expression levels of LC3B and Beclin1 and suppressed AKT expression. Based on these findings, our study suggests that OPNfl/fl-TAGLN-Cre effectively alleviates HPH, potentially through OPN-mediated inhibition of autophagy, thereby promoting PASMCs proliferation via the PI3K-AKT signaling pathway. Consequently, OPN emerges as a novel therapeutic target for HPH.


Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Mice , Humans , Animals , Hypertension, Pulmonary/drug therapy , Osteopontin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Beclin-1/genetics , Beclin-1/metabolism , Pulmonary Artery/metabolism , Hypoxia/complications , Hypoxia/genetics , Hypoxia/metabolism , Pulmonary Arterial Hypertension/metabolism , RNA, Small Interfering/metabolism , Autophagy/genetics , Cell Proliferation , Myocytes, Smooth Muscle/metabolism , Vascular Remodeling
20.
Nat Plants ; 10(4): 661-672, 2024 Apr.
Article En | MEDLINE | ID: mdl-38589484

Carboxysomes are bacterial microcompartments that encapsulate the enzymes RuBisCO and carbonic anhydrase in a proteinaceous shell to enhance the efficiency of photosynthetic carbon fixation. The self-assembly principles of the intact carboxysome remain elusive. Here we purified α-carboxysomes from Prochlorococcus and examined their intact structures using single-particle cryo-electron microscopy to solve the basic principles of their shell construction and internal RuBisCO organization. The 4.2 Å icosahedral-like shell structure reveals 24 CsoS1 hexamers on each facet and one CsoS4A pentamer at each vertex. RuBisCOs are organized into three concentric layers within the shell, consisting of 72, 32 and up to 4 RuBisCOs at the outer, middle and inner layers, respectively. We uniquely show how full-length and shorter forms of the scaffolding protein CsoS2 bind to the inner surface of the shell via repetitive motifs in the middle and C-terminal regions. Combined with previous reports, we propose a concomitant 'outside-in' assembly principle of α-carboxysomes: the inner surface of the self-assembled shell is reinforced by the middle and C-terminal motifs of the scaffolding protein, while the free N-terminal motifs cluster to recruit RuBisCO in concentric, three-layered spherical arrangements. These new insights into the coordinated assembly of α-carboxysomes may guide the rational design and repurposing of carboxysome structures for improving plant photosynthetic efficiency.

...